Kan de straal van een cirkel 0 zijn?

Carolyn, 15 jaar
15 januari 2011

Een cirkel heeft de vergelijking x² + y² - 4x + 2y + 5 = 0, anders geschreven is deze (x-2)² + (y+1)² = 0. Het middelpunt is dus (2,-1) en de straal 0, want r² = (x-x1)² + (y-y1)². Maar als de straal 0 is, is het dan nog een cirkel?

Antwoord

Een cirkel wordt gedefinieerd als de meetkundige plaats van punten die zich op een gelijke afstand (de straal) van een gegeven punt bevinden.

Doorgaans worden er bij die definitie geen eisen gesteld aan die afstand, zodat een cirkel met straal nul nog steeds een cirkel is. 

Het is wel zo dat een aantal eigenschappen behouden blijven (zoals de formules voor omtrek en oppervlakte), maar dat anderzijds een groot aantal andere eigenschappen niet meer noodzakelijk behouden blijven.

Zo zullen eigenschappen die te maken hebben met raaklijn of koorden wellicht onherroepelijk de mist ingaan.



Reacties op dit antwoord

Er zijn nog geen reacties op deze vraag.

Enkel de vraagsteller en de wetenschapper kunnen reageren op een antwoord.

Zoek andere vragen

© 2008-2019
Ik heb een vraag wordt gecoördineerd door het
Koninklijk Belgisch Instituut voor Natuurwetenschappen